|本期目录/Table of Contents|

[1]林 瑜,陈德珍. 大型脱硫塔喷淋段气液两相流动与传热的数值仿真及验证[J].燃烧科学与技术,2016,(01):1-0008.[doi:10.11715/rskxjs.R201501006]
 Lin Yu,Chen Dezhen. Numerical Simulation and Verification of Gas-Liquid Two PhasesFlow and Heat Transfer in Spraying Zone of Large-ScaleDesulphurization Absorption Tower[J].Journal of Combustion Science and Technology,2016,(01):1-0008.[doi:10.11715/rskxjs.R201501006]
点击复制

 大型脱硫塔喷淋段气液两相流动与传热的数值仿真及验证()
分享到:

《燃烧科学与技术》[ISSN:1006-8740/CN:12-1240/TK]

卷:
期数:
2016年01
页码:
1-0008
栏目:
出版日期:
2016-02-15

文章信息/Info

Title:
 Numerical Simulation and Verification of Gas-Liquid Two Phases
Flow and Heat Transfer in Spraying Zone of Large-Scale
Desulphurization Absorption Tower
文章编号:
1006-8740(2016)01-0001-08
作者:
 林 瑜1陈德珍2
 (1. 霍尼韦尔中国研发中心,上海 201203;2. 同济大学热能与环境工程研究所,上海 200092)
Author(s):
 Lin Yu1Chen Dezhen 2
 (1. Honeywell R&D Center,Shanghai 201203,China;
2. Thermal and Environmental Engineering Institute,Tongji University,Shanghai 200092,China)
关键词:
 大型喷淋塔气液两相流传热温度场水蒸气数值仿真
Keywords:
 large-scale spraying towergas-liquid two phases flowheat transfertemperature fieldwater
分类号:
X701.3
DOI:
10.11715/rskxjs.R201501006
文献标志码:
A
摘要:
 对大型湿法脱硫塔喷淋段内部的气液两相流动和传热过程进行模拟,并将模拟结果同现场运行数据进行对
比.结果表明:良好的喷淋层和喷嘴布置可对塔内烟气流动起到很好的整流作用;在烟气入口对面的浆液池上方存
在一气相的最高压区;原烟气的高速冲入对浆液滴的运动轨迹产生明显的影响,使得烟气入口处形成了一个斜向下
呈带状的液滴浓度高值区;喷淋塔内温度梯度变化较大的区域在靠近吸收塔入口的位置,且此区域随烟气量的增大
而扩大——简单忽略塔内气相温度场的不均匀性势必将给计算带来误差;喷淋塔内的气相温度场和水蒸气浓度场分
布有明显的一致性规律,证明了塔内的降温过程主要为蒸发冷却.
Abstract:
 The gas-liquid flow and heat transfer process in the spraying zone of a large-scale desulphurization absorption
tower were investigated by numerical simulation based on computational fluid dynamics(CFD).The Euler-
Lagrange approach was adopted for numerical calculation,and the inter-exchange of momentum,mass and energy
between the two phases was fully considered;the effect of instantaneous turbulent velocity fluctuations on particle
trajectories was also taken into account.The modeling research was validated by the good agreement between the onsite
data and the predicted results.The results show that good arrangement of spraying layers and consisted nozzles
contributes significantly to the uniformity of flue gas distribution in the tower.Spraying by solid cone nozzles shows
superiority on gas organization and gas-liquid contact.Pressure contours of the flue gas in the tower present almost
horizontal parallel lines when solid cone nozzles are applied.The highest pressure region of the gas phase is located
just above the slurry pool level,opposite to the flue gas inlet.An oblique belt of high liquid concentration region is
found near the flue gas inlet,which is due to the change of droplet trajectories caused by the impingement of high
speed inlet raw gas.The high gradient zone in flue gas temperature field is also close to the absorption tower inlet,
which will expand with the increase of flue gas load.Thus,simply neglecting the non-uniformity of flue gas temperature
distribution in the spraying tower may lead to inaccuracy in calculation.The temperature distribution and water
vapor distribution show perfect similarity,which proves that the flue gas quenching in the tower is mainly an evaporative
cooling process.

相似文献/References:

[1]张 洪,施海艳,姬 莉,等. 煤粉中内在矿物对煤焦燃烧反应活性的影响[J].燃烧科学与技术,2010,(05):416.
 ZHANG Hong,SHI Hai-yan,JI Li,et al. Influence of Included Minerals on Combustion Reactivity of Chars[J].Journal of Combustion Science and Technology,2010,(01):416.
[2]吴 新,卓文钦,赵长遂. 燃煤飞灰中铁磁性物质及其形成机制[J].燃烧科学与技术,2010,(05):422.
 WU Xin,ZHUO Wen-qin,ZHAO Chang-sui. Ferromagnetic Substance in Coal-Fired Fly Ash and Its Formation Mechanism[J].Journal of Combustion Science and Technology,2010,(01):422.
[3]苟小龙,陈 正,孙文廷,等. 正庚烷/空气着火过程的多时间尺度模拟[J].燃烧科学与技术,2010,(05):452.
 GOU Xiao-long,CHEN Zheng,SUN Wen-ting,et al. Multi-Time Scale Simulation of Homogeneous Ignition of n-Heptane/Air[J].Journal of Combustion Science and Technology,2010,(01):452.
[4]王春华,仲兆平,鄂加强. 基于LS-SVM的燃烧状况智能诊断[J].燃烧科学与技术,2010,(05):462.
 WANG Chun-hua,ZHONG Zhao-ping,E Jia-qiang. Intelligent Diagnosis of Combustion Based on LS-SVM[J].Journal of Combustion Science and Technology,2010,(01):462.
[5]涂 然,雷 佼,王 彦,等. 利用压力相似预测高原低压环境小尺寸 池火燃烧速率的变化特性[J].燃烧科学与技术,2010,(05):467.
 TU Ran,LEI Jiao,WANG Yan,et al. Small Scale Pool Fire Burning Rate Under Reduced Atmospheric Pressure Using Pressure Modeling[J].Journal of Combustion Science and Technology,2010,(01):467.
[6]郭 鹏,陈 正. NOx对甲烷/空气着火过程的影响[J].燃烧科学与技术,2010,(05):472.
 GUO Peng,CHEN Zheng. Effects of NOx on the Ignition of Methane/Air Mixtures[J].Journal of Combustion Science and Technology,2010,(01):472.
[7]白云龙,王 志,帅石金,等. 缸内直喷汽油机喷雾、混合气形成和燃烧过程的 三维数值模拟[J].燃烧科学与技术,2010,(02):97.
 [J].Journal of Combustion Science and Technology,2010,(01):97.
[8]苗海燕,焦 琦,黄佐华,等. 稀释气对掺氢天然气层流预混燃烧燃烧速率的影响[J].燃烧科学与技术,2010,(02):104.
 MIAO Hai-yan,JIAO Qi,HUANG Zuo-hua,et al. Effect of Diluent Gas on Laminar Burning Velocity of Premixed Hydrogen Enriched Natural Gas and Air Mixtures[J].Journal of Combustion Science and Technology,2010,(01):104.
[9]唐君实,宋 蔷,徐小波,等. 改进的动力学模型对DPF 热再生过程的影响[J].燃烧科学与技术,2010,(02):111.
 TANG Jun-shi,SONG Qiang,XU Xiao-bo,et al.Influence of Revised Kinetics Model on DPF’s Thermal Regeneration[J].Journal of Combustion Science and Technology,2010,(01):111.
[10]吴志远,胡双启,谭迎新. 多元可燃性混合气体最大爆炸压力的简化计算[J].燃烧科学与技术,2010,(02):118.
 WU Zhi-yuan,HU Shuang-qi,TAN Ying-xin. Simplified Calculation of Maximum Blast Pressure ofPoly-Ingredient Flammable Mixed Gases[J].Journal of Combustion Science and Technology,2010,(01):118.

备注/Memo

备注/Memo:
 收稿日期:2015-03-04.
基金项目:国家高技术研究发展计划(863计划)资助项目(2012AA063504).
作者简介:林 瑜(1979— ),男,博士,高级工程师.
通讯作者:林 瑜,jfxn@163.com.
更新日期/Last Update: