|本期目录/Table of Contents|

Active-Thermal-Tunable Terahertz Absorber with Temperature-Sensitive Material Thin Film(PDF)

《纳米技术与精密工程》[ISSN:1672-6030/CN:12-1351/O3]

期数:
2018年2期
页码:
123-128
栏目:
出版日期:
2018-06-15

文章信息/Info

Title:
Active-Thermal-Tunable Terahertz Absorber with Temperature-Sensitive Material Thin Film
作者:
-
Author(s):
Zhao Zhang1 Zhen Tian1* Chao Chang2 Xueguang Wang3 Xueqian Zhang1 Chunmei Ouyang1 Jianqiang Gu1 Jiaguang Han1 Weili Zhang14*
1. Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and Key Laboratory of Opto-Electronics Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China;
3. Hebei University of Engineering, Handan 056038, China;
4......
关键词:
-
Keywords:
Terahertz wave Absorber Thin film InSb
分类号:
-
DOI:
10.13494/j.npe.20180008
文献标识码:
A
摘要:
-
Abstract:
It is shown that active-tunable terahertz absorbers can be realized in a sandwich-structured system comprising an ultrathin dielectric film (polyimide) on a temperature-sensitive substrate (InSb) with a metal film on the back by utilizing the intrinsic carrier density (N) variation in InSb. When increasing the temperature from 250 to 320 K, N in InSb varied from ~5.50×1015?to ~2.98×1016cm–3. Fixing the thickness of dielectric film with the value of 1.37 μm, the absorption peak shifted from 1.41 to 3.29 THz while keeping absorption higher than 99%. This active tunability can respond to even a slight temperature perturbation, and shows polarization insensitivity as well as high tolerance of incidence-angle (absorption peak can still exceed 90% even the incidence angle reaches 60°). Besides, the refractive index of polyimide (PI) has thermal stability at the terahertz range and the merit of good workability. These characteristics guarantee the stability of active-tunable performance. The peculiarities and innovations of this proposal promise a wide range of high efficiency terahertz devices, such as thermal sensors, spatial light modulators (SLMs) and so on.

参考文献/References

[1]? Yan RH, Simes RJ, Coldren LA. Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors.? IEEE Photonics Technol Lett, 1989,1(9):273-275.
[2]? Chin A, Chang TY. Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors.? J Vac Sci Technol B, 1990, 8(2): 339-342.
[3]? Kishino K, Unlu MS, Chyi JI, et al. Resonant cavity-enhanced (RCE) photodetectors. IEEE J Quantum Electron,1991,27(8): 2025-2034.
[4]? Yan RH, Simes RJ, Coldren LA. Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures. IEEE J Quantum Electron, 1991, 27(7): 1922-1931.
[5]? Law KK, Yan RH, Coldren LA, et al. Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1. Appl Phys Lett, 1990, 57(13):1345-1347.
[6]? Tischler YR, Bradley MS, Bulovi? V. Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt Lett, 2006, 31(13): 2045-2047.
[7]? Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science,? 2006, 314(5801): 977-980.
[8]? Liu XL, Starr T, Starr AF, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett, 2010,104(20): 207403.
[9]? Hao JM, Wang J, Liu XL, et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett, 2010, 96(25): 251104-251104.
[10] Watts CM, Liu XL, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater, 2012, 24(23):98-120.
[11]? Avitzour Y, Urzhumov YA, Shvets G. Wide-angle infrared absorber based on negative index plasmonic metamaterial. Phys Rev B, 2008, 79(4): 045131.
[12]? Pendry JB, Holben AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996,76(25): 4773-4776.
[13]? Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech, 1999, 47(11): 2075-2084.
[14]? Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett, 2008,100(20): 207402.
[15]? Alves F, Kearney B, Grbovic D, et al. Strong terahertz absorption using SiO2/Al based metamaterial structures. Appl Phys Lett, 2012,100(11): 111104.
[16]? Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt Express, 2008,16(10): 7181-7188.
[17]? Padilla WJ, Taylor AJ, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett, 2006, 96(10): 107401.
[18]? Bhattacharyya S, Ghosh S, Chaurasiya D, et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl Phys A, 2014, 118(1): 207-215.
[19] Wang BX, Zhai X, Wang GZ, et al. A novel dual-band terahertz metamaterial absorber for a sensor application. J Appl Phys, 2015, 117(1): 014504.
[20]? Li XW, Liu HJ, Sun QB, et al. Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber. Photonic Nanostruct, 2015, 15(4): 81-88.
[21]? Grant J, Ma Y, Saha SC, et al. Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett, 2011, 36(17): 3476-3478.
[22] Watts CM, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics, 2014, 8(8): 605-609.
[23] Withayachumnankul W, Abbott D. Terahertz imaging: Compressing onto a single pixel. Nat Photonics, 2014, 8(8): 593-594.
[24]? Liutkus A, Martina D, Popoff SM, et al. Imaging with nature: Compressive imaging using a multiply scattering medium. Sci Rep, 2014, 4(4): 5552.
[25]? Kats MA, Sharma D, Lin J, et al. Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett, 2012, 101(22):?? 221101.
[26] Wu HX, Shi FH, Chen YH. Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor. Opt Express, 2016, 24(18): 20663-20671.
[27]? Born M, Wolf E, Hecht E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7 ed. NY: Pergamon,?? 1999.
[28]? Howells SC, Schlie LA. Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl Phys Lett, 1996, 69(4): 550-552.
[29]? Han JG, Lakhtakia A, Tian Z, et al. Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet. Opt Lett, 2009, 34(9): 1465-1467.
[30]? Han JG, Lakhtakia A. Semiconductor split-ring resonators for thermally tunable terahertz metamaterials. J Mod Optic, 2008, 56(4): 554-557.

备注/Memo

备注/Memo:
Article history:
Received 2018-03-07
received in revised form 2018-03-20
accepted 2018-03-25
Available online
Corresponding author.
E-mail address: tianzhen@tju.edu.cn(Zhen Tian)
?????????????? ?????????? weili.zhang@okstate.edu(Weili Zhang)
Peer review under responsibility of Tianjin University.
更新日期/Last Update: 2018-09-19