|本期目录/Table of Contents|

 紫外LED辅助的4H-SiC化学机械抛光(PDF)

《纳米技术与精密工程》[ISSN:1672-6030/CN:12-1351/O3]

期数:
2017年5期
页码:
342-346
栏目:
精密加工
出版日期:
2017-09-15

文章信息/Info

Title:
 Chemical Mechanical Polishing of 4H-SiC Wafer with UV-LED Light
作者:
 叶子凡1 周艳23 徐莉23 潘国顺123
 1. 清华大学摩擦学国家重点实验室, 北京 100084; 2. 深圳清华大学研究院深圳市微纳制造重点实验室, 深圳 518057;
3. 广东省光机电一体化重点实验室, 深圳 518057
Author(s):
 Ye Zifan1 Zhou Yan23 Xu Li23 Pan Guoshun123
 1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. Micro/Nano Engineering Key Laboratory, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
3. Guangdong Provincial Key Laboratory of Optomechatronics, Shenzhen 518057, China
关键词:
 4H-SiC晶片 化学机械抛光 紫外LED
Keywords:
 4H-SiC wafer chemical mechanical polishing UV-LED
分类号:
TN305.2
DOI:
DOI 10.13494/j.npe.20170005
文献标识码:
A
摘要:
 在4H-SiC晶片的化学机械抛光(CMP)体系中加入紫外LED系统,研究TiO2颗粒、紫外LED光功率、抛光温度和抛光液pH值对4H-SiC晶片抛光性能的影响规律,以获得较高的材料去除速率(MRR)和原子级光滑表面,满足LED器件对衬底材料表面的严格要求.结果表明,采用平均粒径25 nm、质量分数为2%的TiO2颗粒,可显著提高MRR,且减少微划痕等表面缺陷;增大紫外LED功率,MRR随之增大;升高抛光温度,MRR快速提高,并可降低抛光所得表面粗糙度;在CMP体系中加入紫外体系可增加羟基自由基数量,抛光液pH值较低(2.2)也可维持较高MRR值,且抛光液pH值超过10时MRR值大幅提高.采用原子力显微镜(AFM)、光学显微镜来考察4HSiC晶片抛光后的表面质量.基于各因素的影响规律,最终获得表面粗糙度为0.058 6 nm的4H-SiC晶片表面,且MRR达到352.8 nm/h.
Abstract:
 This paper discusses the application of photocatalytic oxidation technology in 4H-SiC wafer chemical mechanical polishing (CMP). The influences of titania particles, ultraviolet (UV) LED intensity, polishing temperature and pH value of slurry on polishing performance were examined to achieve high material removal rate (MRR) and atomiclevelroughness smooth surface for strict demands of substrate in LED industry. Results show that titania particles with average particle size of 25 nm and concentration of 2% can reduce microscratches and obtain high MRR; that higher UVLED intensity leads to higher MRR; that increasing polishing temperature can not only improve MRR obviously but also decrease surface roughness remarkably; that photoinduced holes oxidize slurry and generate additional ·OH, leading to higher MRR when pH of slurry is 2.2, and MRR increases significantly when pH of slurry increases to 10. Atomic force microscope (AFM) and optical microscope were used to investigate polishing surface quality. Finally, 4H-SiC wafer surface with roughness Ra of 0.058 6 nm and MRR of 352.8 nm/h is obtained.

参考文献/References

备注/Memo

备注/Memo:
收稿日期: 2017-05-22.
基金项目: 科学挑战专题资助项目(JCKY2016212A506-0504);国家自然科学基金资助项目(51675348).
作者简介: 叶子凡(1992—),男,硕士研究生.
通讯作者: 潘国顺,研究员,pangs@tsinghua.edu.cn.
更新日期/Last Update: 2017-09-20