|本期目录/Table of Contents|

基于4H-SiC的LC谐振式高温无线压力敏感芯片的设计与优化(PDF)

《纳米技术与精密工程》[ISSN:1672-6030/CN:12-1351/O3]

期数:
2017年2期
页码:
79-86
栏目:
微机电系统
出版日期:
2017-03-15

文章信息/Info

Title:
Design and Optimization of 4H-SiC Based and LC Resonant Wireless Passive Pressure Sensitive Chips for Harsh Environment Applications
文章编号:
1672-6030(2017)02-0079-08
作者:
何文涛12 李艳华2 邹江波1 张世名1 赵和平3 杨龙4
1. 航天长征火箭技术有限公司, 北京100076; 2. 中国航天时代电子公司, 北京100094; 3. 中国空间技术研究院, 北京100086; 4. 厦门大学航空航天学院, 厦门361005
Author(s):
He Wentao1 2 Li Yanhua2 Zou Jiangbo1 Zhang Shiming1 Zhao Heping3 Yang Long4
1. Aerospace Long March Launch Vehicle Technology Company, Beijing 100076, China; 2. China Aerospace Times Electronics Co. Ltd, Beijing 100094, China; 3. China Academy of Space Technology, Beijing 100086, China; 4. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
关键词:
高温压力 4H-SiC LC谐振 仿真设计
Keywords:
pressure under high-temperature 4H-SiC LC resonance simulation design
分类号:
TP212.1
DOI:
10.13494/j.npe.20160050
文献标识码:
A
摘要:
针对航空发动机、重型燃气轮机等动力设备燃烧室内压力原位测量的需求,设计了一种基于4H-SiC的LC谐振式无线高温压力敏感芯片.以现有SiC微工艺水平为基础,利用TCAD软件及多物理场耦合仿真软件,完成了敏感芯片电容、电感、感压膜等主要部件的结构设计、优化,以提高敏感芯片的Q值及耦合强度.探讨了电感内置、外置两种设计方案本体电容的大小,并在此基础上提出一种双腔体结构,将本体电容值减小到179.66 pF.优化后的敏感芯片常温(20 ℃)Q值约为13.66,100 kPa满量谐振频率变化158.62 kHz;1 000 ℃下的Q值为3.65,满量变化55.53 kHz,且1 000 ℃下的热应力较小.这种敏感芯片将可应用于高温压力传感器的制备,为我国自主研制航空发动机、高超发动机、重型燃气轮机等先进动力系统提供支撑.
Abstract:
To meet the demand of the in-situ pressure measurement in combustion chambers of heavy gas turbines and aero- chips were designed. To improve the Q value and couple coefficient, geometric parameters of chip’s primary structures, such as the capacitance, inductance, vacuum cavity and diaphragm, were optimized by numerical analysis with TCAD and multi-physic field coupled-simulation softwares. Inductor’s relative position, out of or inside the vacuum cavity was discussed, based on which a dual-cavity chip design was proposed, reducing the bulk capacitance to 179.66 pF. Q value of sensitve chips fabricated with optimized structure paramters was 13.66 and 3.65 at 20 ℃ and 1 000 ℃, respectively. The variation of the resonance frequency under full scale 100 kPa was 158.62 kHz at 20 ℃, which reduced to 55.53 kHz when the temperature rose to 1 000 ℃. These optimized chips could be applied to prepare pressure sensors for harsh environment applications, which would support the independent development of aero-engines, hypersonic engines and heavy gas turbines.

参考文献/References

-

备注/Memo

备注/Memo:
收稿日期: 2016-12-07. 基金项目: 总装预先研究资助项目(51323040122). 作者简介: 何文涛(1984—) ,男,博士,xxhhzhw@126.com. 通讯作者: 邹江波,研究员,zoujiangbo@hotmail.com.
更新日期/Last Update: 2017-12-20