|本期目录/Table of Contents|

 基于SOI-MEMS技术的静电驱动-电容检测硅谐振器(英文)(PDF)

《纳米技术与精密工程》[ISSN:1672-6030/CN:12-1351/O3]

期数:
2013年5期
页码:
447-452
栏目:
精密测量
出版日期:
2013-09-15

文章信息/Info

Title:
 An Electrostatically Driven-Capacitively Sensed Silicon Resonator
Based on SOI-MEMS Technology
作者:
 焦海龙1 2 陈德勇1 王军波1 张 健1 2 曹明威1 2
 1. 中国科学院电子学研究所传感技术国家重点实验室,北京100190;
2. 中国科学院研究生院,北京100080
Author(s):
 Jiao Hailong1 2 Chen Deyong1 Wang Junbo1 Zhang Jian1 2 Cao Mingwei1 2
 1.State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
2.Graduate University of Chinese Academy of Sciences, Beijing 100080, China
关键词:
 MEMS谐振器静电驱动电容检测SOI
Keywords:
 MEMS resonator electrostatic drive capacitive sense silicon-on-insulator (SOI)
分类号:
TN405;TP212.1
DOI:
-
文献标识码:
A
摘要:
 提出一种基于SOI-MEMS技术的静电驱动-电容敏感检测的横向硅谐振器,对其进行设计、MEMS工艺加工制作实现、微弱电容检测及开环测试.该新型静电激励谐振器结构主要包含一个从中间受力点向两侧引出两个电极板的双端固支梁,这种设计使得此谐振器的静电驱动电压远小于具有相同电极板面积和极板间距的同类静电驱动谐振器,且检测电容更大,降低了检测难度.以器件层电阻率很低(0.001~0.002 Ω·bcm)的SOI晶圆为基础材料,其SOI-MEMS加工工艺流程简单,仅需要2块掩膜版,有4个主要单步工艺.实验测试结果表明:在真空度为0.1~1.0 Pa环境下,直流偏置电压低至30 V,交流驱动电压峰-峰值为20 mV时,该谐振器在其谐振频率点 52 261.99 Hz处的Q值依然高于11 800.
Abstract:
 This paper presents the design, fabrication, ultra-small capacitance detection and open-loop tests of a novel electrostatically driven-capacitively sensed lateral silicon resonator based on silicon-on-insulator micro electro mechanical systems (SOI-MEMS) technology. A new micro resonator structure is proposed, which has a key structure of a beam with two perforated structures stretching from the middle of the beam to each side. Compared with other designs with the same overlap area of electrode plates and gap between the two electrode plates, this design enables the resonator to be driven by smaller DC voltage bias; moreover, the detected capacitor is bigger, thus making the detection easier. It is fabricated based on SOI wafer with a very low resistivity device layer (0.001—0.002 Ω·bcm), and the process is very simple with only two photo masks and four key processes. The test results show that the DC voltage bias can be less than 30 V, the peak-to-peak voltage of the AC sine drive voltage is 20 mV, and the Q-factor of resonator is more than 11 800 with the resonant frequency of 52 261.99 Hz in vacuum (0.1—1.0 Pa).

参考文献/References

 [1] Beeby Stephen, Ensell Graham, Kraft Michael, et al. MEMS Mechanical Sensors [M]. Boston, London: Artech House, 2004.
[2] Li Yuxin. Design and Fabrication of MEMS Based Barometric Pressure [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012(in Chinese).
[3] Hao X C, Jian Y G, Takao H, et al. Zero temperature coefficient gas-sealed pressure sensor using mechanical temperature compensation [C]// 16th International Solid-State Sensors, Actuators and Microsystems Conference (Transducers). Beijing, China, 2011: 116-119.
[4] Chen Deyong, Li Yuxin, Liu Meng. Design and experiment of a laterally driven micromachined resonant pressure sensor for barometers [J]. Procedia Engineering, 2010, 5: 1490-1493.
[5] Alexandra Koumela, Denis Mercier, Vincent Gouttenoire, et al. Silicon nanowire resonator with integrated electrostatic actuation [J]. Procedia Engineering, 2011, 25: 1649-1652.
[6] Chuang Wan-Chun, Lee Hsin-Li, Chang Pei-Zen, et al. Review on the modeling of electrostatic MEMS [J]. Sensors, 2010, 10(6): 6149-6171.
[7] Hu Fangrong, Yao Jun, Qiu Chuankai, et al. A MEMS micromirror driven by electrostatic force [J]. Journal of Electrostatics, 2010, 68(3): 237-242.
[8] Schonhardt S, Korvink J G, Mohr J, et al. Optimization of an electromagnetic comb drive actuator [J]. Sensors and Actuators A: Physical, 2009, 154(2): 212-217.
[9] Davis Z J, Svendsen W, Boisen A. Design, fabrication and testing of a novel MEMS resonator for mass sensing applications [J]. Microelectronic Engineering, 2007, 84: 1601-1605.
[10]Hsu W-T, Clark J R, Nguyen C T-C. A sub-micron capacitive gap process for multiple-metal-electrode lateral micromechanical resonators [C]// Technical Digest, IEEE Int Micro Electro Mechanical Systems Conf. Interlaken, Switzerland, 2001: 349-352.
[11]Chang Yuan-Jen, Gray Jason M, Imtiaz Atif, et al. Micromachined resonators of high Q-factor based on atomic layer deposited alumina [J]. Sensors and Actuators A: Physical, 2009, 154(2): 229-237.
[12]Chang Wen-Teng. Static and motional feedthrough capacitance of lexural microresonator [J]. Active and Passive Electronic Components, 2011: 546986.
[13]Lee J E-Y, Seshia A A. Direct parameter extraction in feedthrough-embedded capacitive MEMS resonators [J].Sensors and Actuators A: Physical, 2011, 167(2): 237-244.
[14]Mestrom R M C, Fey R H B, Phan K L, et al. Experimental validation of hardening and softening resonances in a clamped-clamped beam MEMS resonator [C]// Procedia Chemistry. 2009, 1(1): 812-815.
[15]Zhang W M, Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation [J]. IEEE Sens J, 2007, 7(3): 370-380.
[16]Mestrom R M C, Fey R H B, van Beek J T M, et al. Modelling the dynamics of a MEMS resonator: Simulations and experiments [J]. Sensors and Actuators A: Physical, 2008, 142: 306-315.
[17]Shao L C, Wong C L, Palaniapan M. Study of the nonlinearities in micromechanical clamped-clamped beam resonators using stroboscopic SEM [J]. J Micromech and Microeng, 2008, 18(8): 085019.

备注/Memo

备注/Memo:
收稿日期: 2013-03-08.
基金项目: 国家自然科学基金资助项目(61072022);北京市科学技术委员会支撑项目(D11110100160000).
作者简介: 焦海龙(1984— ), 男, 博士生.
通讯作者: 陈德勇, 研究员, dychen@mail.ie.ac.cn.
网络出版时间: 2013-05-08.网络出版地址: http://www.cnki.net/kcms/detail/12.1351.O3.20130508.1512.001.html.
更新日期/Last Update: 2013-10-23