|本期目录/Table of Contents|

 压电致动快速刀具伺服迟滞非线性的分数阶模型(PDF)

《纳米技术与精密工程》[ISSN:1672-6030/CN:12-1351/O3]

期数:
2012年4期
页码:
369-373
栏目:
精密加工
出版日期:
2012-07-15

文章信息/Info

Title:
 A Fractional Order Model for the Hysteresis Non-Linearity of a Piezoelectric Actuated Fast Tool Servo
作者:
 周晓勤1 朱志伟1 王文才2 刘强1
 (1. 吉林大学机械科学与工程学院, 长春130022;
2. 密西根大学机械工程系, Ann Arbor, MI 48109-2136)
Author(s):
 ZHOU Xiaoqin1 ZHU Zhiwei1 WANG Wencai2 LIU Qiang1
 (1. School of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA)
关键词:
 超精密切削快速刀具伺服迟滞非线性分数阶微积分
Keywords:
 ultra-precision machining fast tool servo hysteresis non-linearity fractional order calculus
分类号:
-
DOI:
-
文献标识码:
A
摘要:
在复杂曲面或功能结构的超精密车削以及主动误差校正车削中,利用快速刀具伺服(FTS)受到了学术界和工程界的广泛关注.然而,无论采用哪一种驱动方式,FTS皆存在难以模型化的迟滞非线性,从而制约了FTS跟踪性能的提高.本文利用分数阶微积分理论,针对压电致动型FTS的迟滞非线性建立了等效的分数阶动力学模型,得到了压电致动型FTS的传递函数.利用一种改进的差分进化算法进行了模型参数的辨识.通过正弦波及三角波信号激励的实验结果表明,针对压电致动型FTS所提出的分数阶模型建模误差小于4%,具有预期的模型精度.本研究为FTS的迟滞非线性建模提供了一种简单有效的新方法,对于提高FTS运动轨迹的跟踪控制性能具有重要意义.
Abstract:
 Ultra-precision turning based on fast tool servo(FTS), which is utilized to create intricate surfaces and functional structures and to actively compensate for figure errors, has been under increasing research interest. Hysteresis non-linearity, which is extremely hard to model, exists in FTS driven by whatever approach, and has become a critical limitation to tracking performance. An equivalent fractional order dynamic model of a piezoelectric actuated FTS is established based on fractional order calculus, and the transfer function of the FTS is obtained. An improved differential evolution(IDE) algorithm is employed to identify the parameters of this dynamic model. The testing results under sinusoidal and triangle excitations show that the modeling error of the proposed fractional order model for the piezoelectric actuated FTS is less than 4% and has expected model accuracy. The work presented in this paper provides a simple and efficient method for hysteresis non-linearity modeling of FTS and is of critical significance for the trajectory tracking of FTS.

参考文献/References

-

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2012-11-14